

# NTP TOXICOLOGY AND CARCINOGENESIS STUDIES OF A PENTABROMODIPHENYL ETHER MIXTURE [DE-71 (Technical Grade)]

(CAS NO. 32534-81-9) (GAVAGE STUDIES)

**NTP TR 589** 

J. K. Dunnick & A. Brix
National Institute of Environmental Health Sciences
NTP Technical Reports Peer Review Meeting
June 25, 2015





## **Outline of DE-71 Review Today**

- DE-71 background
- Summary of selected findings in the NTP DE-71 studies
  - 3-month study results
  - 2-year study results
- Conclusions and level of carcinogenic activity



- Pentabromodiphenyl ethers nominated by California Office of Environmental Health Hazard Assessment (OEHHA)
- Pentabromodiphenyl ethers are flame retardants that are bioaccumulative and persistent organic pollutants
- DE-71 (technical grade), a mixture of PBDEs, was studied because it is what was produced and is representative of PBDE exposure to humans
- Widespread human exposure





| PBDE    | Name                                   | CAS#        | % in DE-<br>71 |
|---------|----------------------------------------|-------------|----------------|
| BDE-47  | 2,2',4,4'-Tetrabromodiphenyl ether     | 5436-43-1   | 35.68          |
| BDE-100 | 2,2',4,4',6-Pentabromodiphenyl ether   | 189084-64-8 | 10.44          |
| BDE-99  | 2,2',4,4',5-Pentabromodiphenyl ether   | 60348-60-9  | 41.67          |
| BDE-85  | 2,2',3,4,4'-Pentabromodiphenyl ether   | 182346-21-0 | 2.03           |
| BDE-154 | 2,2',4,4',5,6'-Hexabromodiphenyl ether | 207122-15-4 | 3.63           |
| BDE-153 | 2,2',4,4',5,5'-Hexabromodiphenyl ether | 68631-49-2  | 3.33           |



## 3-Month Study Design

- F344/N rats and B6C3F1/N mice (10 animals/sex/dose)
- oral gavage, corn oil, 5 days/wk, for 3 months
- 0, 0.01, 5, 50, 100, 500 mg/kg
- Additional rats added for 4 and 25 day endpoints (10/sex/dose)
- Treatment-related toxicity in Liver and Thyroid system
- BDE-47, BDE-99, BDE-153 measured in adipose & liver

#### DE-71, BDE-47, BDE-99, BDE-153:

- Negative in bacterial mutagenicity assays
- Negative in mouse erythrocyte micronucleus assay



## F344/N Male Rat – selected liver findings

| Dose (mg/kg)             | 0     | 0.01  | 5                         | 50            | 100           | 500           |
|--------------------------|-------|-------|---------------------------|---------------|---------------|---------------|
| Male Rat                 |       |       |                           |               |               |               |
| Final survival           | 10    | 10    | 10                        | 10            | 10            | 10            |
| Final Body wt (g)        | 316   | 335   | 327                       | 330           | 318           | 272**         |
| Liver wt (g)             | 10.09 | 11.22 | 12.13**                   | 16.04**       | 17.42**       | 20.01**       |
| Hepatocyte hypertrophy   | 0     | 0     | 9**<br>(1.0) <sup>a</sup> | 10**<br>(2.7) | 10**<br>(3.4) | 10**<br>(3.7) |
| Hepatocyte vacuolization | 0     | 0     | 0                         | 10**<br>(1.2) | 10**<br>(2.0) | 10**<br>(1.7) |

<sup>\*</sup>P<0.05; \*\*P<0.01 N=10

<sup>&</sup>lt;sup>a</sup>Severity grade (1 = minimal; 2 = mild; 3 = moderate; 4 = marked)



## **DE-71 3-month Study**

## F344/N Rat – other lesions

| Dose (mg/kg)                        | 0 | 0.01 | 5       | 50           | 100          | 500           |
|-------------------------------------|---|------|---------|--------------|--------------|---------------|
| Male Rat                            |   |      |         |              |              |               |
| Thyroid gland, follicle hypertrophy | 0 | 0    | 0       | 0            | 1<br>(1.0)   | 9**<br>(1.0)  |
| Stomach, glandular erosion          | 0 | 0    | 1 (1.0) | 2<br>(1.5)   | 3<br>(1.7)   | 4*<br>(1.5)   |
| Epididymis<br>hypospermia           | 0 | 0    | 0       | 0            | 0            | 9**<br>(1.9)  |
| Female Rat                          |   |      |         |              |              |               |
| Thyroid gland, follicle hypertrophy | 0 | 0    | 0       | 8**<br>(1.0) | 9**<br>(1.4) | 10**<br>(2.9) |
| Stomach, glandular erosion          | 0 | 0    | 0       | 0            | 0            | 3<br>(1.0)    |
| Thymus atrophy                      | 0 | 0    | 0       | 0            | 0            | 4*<br>(1.3)   |

<sup>\*</sup>P<0.05; \*\*P<0.01 N=10



## **B6C3F1/N Male Mouse – selected liver findings**

| Dose (mg/kg)              | 0    | 0.01 | 5       | 50            | 100           | 500           |
|---------------------------|------|------|---------|---------------|---------------|---------------|
| Male Mice                 |      |      |         |               |               |               |
| Final survival            | 10   | 10   | 10      | 10            | 10            | 3             |
| Final Body wt (g)         | 39.3 | 38.8 | 39.3    | 37.3          | 35.9**        | 28.6**        |
| Liver wt (g)              | 1.38 | 1.31 | 1.50    | 1.79**        | 2.18**        | 4.11**        |
| Hepatocyte hypertrophy    | 0    | 0    | 1 (1.0) | 10**<br>(1.8) | 10**<br>(2.7) | 10**<br>(3.1) |
| Hepatocyte vacuolization  | 0    | 0    | 0       | 0             | 0             | 6**<br>(1.2)  |
| Hepatocyte focal necrosis | 0    | 0    | 0       | 0             | 0             | 2<br>(2.0)    |
| Hepatocyte necrosis       | 0    | 0    | 0       | 0             | 1<br>(1.0)    | 10**<br>(1.3) |

<sup>\*\*</sup>P<0.01 N=10



## **B6C3F1/N Male Mouse – other lesions**

| Dose (mg/kg)                                 | 0 | 0.01 | 5          | 50 | 100        | 500          |
|----------------------------------------------|---|------|------------|----|------------|--------------|
| Male Mice                                    |   |      |            |    |            |              |
| Adrenal cortex degeneration fatty            | 0 | 0    | 0          | 0  | 0          | 4**<br>(1.3) |
| Adrenal cortex, zona fasciculata hypertrophy | 0 | 0    | 0          | 0  | 0          | 5**<br>(1.0) |
| Testes abnormal residual body                | 0 | 0    | 1<br>(2.0) | 0  | 1<br>(2.0) | 5**<br>(2.0) |
| Thymus atrophy                               | 0 | 0    | 0          | 0  | 0          | 6**<br>(2.5) |

<sup>\*\*</sup>P<0.01 N=10



## **B6C3F1/N Female Mouse – other lesions**

| Dose (mg/kg)                      | 0 | 0.01 | 5 | 50         | 100 | 500        |
|-----------------------------------|---|------|---|------------|-----|------------|
| Female Mice                       |   |      |   |            |     |            |
| Adrenal cortex degeneration fatty | 0 | 0    | 0 | 0          | 0   | 2<br>(2.0) |
| Thymus atrophy                    | 0 | 0    | 0 | 1<br>(2.0) | 0   | 3<br>(3.3) |

N=10



## Clinical Chemistry, Hematology, Liver Enzymes – Selected Findings

- Male & female rats (day 4, 25 and 93)

  - fraction is a second of the sec
  - Verythron: Verythro
  - Evidence of hemoconcentration: ↑total protein, ↑albumin, ↑UN
  - Liver (day 25, & 93):
    - ◆PROD(CYP2B), ◆EROD(CYP1A1), ◆A4H(CYP1A2), ◆UDPG
    - ♠Bile salts, ♠SDH, ♠ALT



## Clinical Chemistry, Hematology, Liver Enzymes – Selected Findings

- Male & female mice (day 93)
  - Liver:
    - ↑PROD(CYP2B), ↑EROD(CYP1A1), ↑A4H(CYP1A2), ↑UDPG
  - Verythron: Verythron: Verythron: Verythron: Verythron verythron



## Reproductive toxicity endpoints

- Rats (0, 50, 100, 500 mg/kg)
  - ♥ Epididymis wt., sperm motility, sperm per cauda (primarily at 500 mg/kg)
  - No estrous cycling at 500 mg/kg
- Mice (0, 5, 50, 100 mg/kg)
  - ♥ Cauda Epididymis wt., sperm motility (at 100 mg/kg)



## 2-Year Study Design (oral gavage, corn oil)

- Wistar Han dams [Crl:Wl(Han)] Rat
  - 0, 3, 15, 50 mg/kg
  - Time-mated dams: Dosing GD6-PND20
  - Pups: Dosing PND12-PND21

## 2-year rat dosing phase

- ~2 males and 2 females selected per litter assigned to 2 year dosing phase of the study on PND21
- 50 animals/sex/dose from about 25-30 litters/dose group (core study)
- Dosing 5X/wk: 0, 3, 15, 50 mg/kg
- Interim evaluation at 3 months in 0 and 50 mg/kg (10/sex/grp)
- BDE-47, BDE-99, BDE-153 measured in adipose, liver, plasma



## 2-Year Study Design (oral gavage, corn oil)

- B6C3F1/N Mouse adult exposure only
  - 0, 3, 30, 100 mg/kg
  - 50 animals/sex/dose
  - 5X/week
- BDE-47, BDE-99, BDE-153 measured in adipose, liver



## Wistar Han Rat - Littering Parameters

- No significant treatment-related effects during perinatal exposure based on maternal, littering and pup parameters
  - # pups per litter, pup weights, dam weights, # dams with litters, # dams not pregnant, # of dams littering
- No litter effect on the occurrence of treatment-related tumors



### Wistar Han Rat - Interim Sac at 3 months

| Dose (mg/kg)                       | Males<br>0    | Males<br>50      | Females<br>0  | Females<br>50    |
|------------------------------------|---------------|------------------|---------------|------------------|
| Mean body wt (g)                   | 403           | 433              | 246           | 213**            |
| Mean liver wt (g)                  | 13.68         | 19.53**          | 7.94          | 9.28*            |
| Hepatocyte hypertrophy             | 0/10          | 10/10**<br>(3.1) | 0/9           | 10/10**<br>(3.0) |
| Hepatocyte fatty change            | 2/10<br>(1.0) | 8/10**<br>(1.5)  | 0/9<br>(1.0)  | 3/10<br>(1.0)    |
| Thyroid gland follicle hypertrophy | 0/10          | 4/10*<br>(1.3)   | 1/10<br>(1.0) | 5/10<br>(1.2)    |

<sup>\*</sup>P<0.05; \*\*P<0.01



## Wistar Han Rat - Final Survival & Mean Body Weight

| Dose (mg/kg)                       | 0        | 3            | 15           | 50            |
|------------------------------------|----------|--------------|--------------|---------------|
| Male Rat                           |          |              |              |               |
| Survival                           | 36       | 35           | 38           | 25*           |
| Mean BW (g)<br>% control (day 703) | 673<br>- | 669<br>(99%) | 695<br>(103) | 678<br>(101%) |
| Female Rat                         |          |              |              |               |
| Survival                           | 37       | 39           | 33           | 28            |
| Mean BW (g)<br>% control (day 704) | 390<br>- | 374<br>(96%) | 358<br>(92%) | 314<br>(81%)  |

<sup>\*</sup>P≤0.05 N = 50 per group



## Wistar Han Male Rat Body Weights





## Wistar Han Female Rat Body Weights





#### Wistar Han Male Rat – Liver

| Dose (mg/kg)                                                                             | 0           | 3         | 15        | 50           |
|------------------------------------------------------------------------------------------|-------------|-----------|-----------|--------------|
| N                                                                                        | 49          | 50        | 50        | 50           |
| Hepatocellular adenoma <sup>a</sup>                                                      | 3*<br>(6%)  | 2<br>(4%) | 4<br>(8%) | 8<br>(16%)   |
| Hepatocellular carcinomab                                                                | 0           | 0         | 0         | 2<br>(4%)    |
| Hepatocellular adenoma or carcinoma <sup>a</sup>                                         | 3**<br>(6%) | 2<br>(4%) | 4<br>(8%) | 9*<br>(18%)  |
| Hepatocholangioma <sup>b</sup>                                                           | 0*          | 0         | 0         | 2            |
| Hepatocholangioma,<br>hepatocellular adenoma or<br>hepatocellular carcinoma <sup>a</sup> | 3**<br>(6%) | 2<br>(4%) | 4<br>(8%) | 11*<br>(22%) |

<sup>\*</sup>P≤0.05; \*\*P≤0.01

 $^{\rm a}4/299$  (1.4%  $\pm$  2.5%), range 0%-6%  $^{\rm b}0/299$ 



## Wistar Han Male Rat – Thyroid

| Dose (mg/kg)                                                    | 0    | 3     | 15    | 50    |
|-----------------------------------------------------------------|------|-------|-------|-------|
| N                                                               | 45   | 45    | 48    | 46    |
| Thyroid gland follicle hypertrophy                              | 1**  | 26**  | 34**  | 23**  |
|                                                                 | (2%) | (58%) | (70%) | (50%) |
| Thyroid gland: follicular cell adenoma <sup>a</sup>             | 1*   | 3     | 2     | 6*    |
|                                                                 | (2%) | (7%)  | (4%)  | (13%) |
| Thyroid gland: follicular cell carcinomab                       | 0    | 2     | 1     | 0     |
|                                                                 | (0%) | (4%)  | (2%)  | (0%)  |
| Thyroid gland follicular cell adenoma or carcinoma <sup>a</sup> | 1    | 5     | 3     | 6*    |
|                                                                 | (2%) | (11%) | (6%)  | (13%) |

<sup>\*</sup>P<0.05; \*\*P<0.01

Historical controls, gavage corn oil

 $^{\rm a}4/95$  (4.1%  $\pm$  2.7%), range 2%-6%  $^{\rm b}$  0/95  $^{\rm a}$ 

Historical controls, all routes

<sup>a</sup>5/295 (1.7% ± 2.4%), range 0%-6% <sup>b</sup>0/295



## Wistar Han Male Rat - Pituitary

| Dose (mg/kg)                                                            | 0             | 3           | 15          | 50            |
|-------------------------------------------------------------------------|---------------|-------------|-------------|---------------|
| N                                                                       | 49            | 49          | 50          | 50            |
| Pituitary gland: pars distalis or unspecified site adenoma <sup>a</sup> | 19**<br>(39%) | 12<br>(24%) | 22<br>(44%) | 35**<br>(70%) |

<sup>\*\*</sup>P<0.01



## DE-71 2-year study

#### Wistar Han Female Rat - Liver

| Dose (mg/kg)                                                                              | 0           | 3         | 15         | 50            |
|-------------------------------------------------------------------------------------------|-------------|-----------|------------|---------------|
| N                                                                                         | 50          | 49        | 50         | 47            |
| Hepatocellular adenoma <sup>a</sup>                                                       | 3**<br>(6%) | 2<br>(4%) | 8<br>(16%) | 16**<br>(34%) |
| Hepatocellular carcinomab                                                                 | 0**         | 0         | 1<br>(2%)  | 6**<br>(13%)  |
| Hepatocellular adenoma or carcinoma <sup>a</sup>                                          | 3**<br>(6%) | 2<br>(4%) | 8<br>(16%) | 17**<br>(36%) |
| Cholangiocarcinomab                                                                       | 0*          | 0         | 0          | 2<br>(4%)     |
| Hepatocholangioma <sup>b</sup>                                                            | 0**         | 0         | 0          | 8**<br>(17%)  |
| Hepatocholangioma,<br>hepatocellular adenoma, or<br>hepatocellular carcinoma <sup>a</sup> | 3**<br>(6%) | 2<br>(4%) | 8<br>(16%) | 21**<br>(45%) |

Historical controls, gavage corn oil

 $^{\rm a}4/100~(4.0\%~\pm~2.8\%)$ , range 2%-6%  $^{\rm b}0/100$ 

Historical controls, all routes

 $^{a}6/300 (2.0\% \pm 2.2\%)$ , range 0%-6%

<sup>b</sup>0/300

\*P≤0.05; \*\*P≤0.01





#### Wistar Han Female Rat - Uterus

#### **Original Transverse & Residual Longitudinal Review**

| Dose (mg/kg)                                         | 0           | 3            | 15           | 50          |
|------------------------------------------------------|-------------|--------------|--------------|-------------|
| N                                                    | 50          | 50           | 50           | 49          |
| Uterus, metaplasia, squamous                         | 0           | 2<br>(4%)    | 5*<br>(10%)  | 6*<br>(12%) |
| Cervix, squamous hyperplasia                         | 2**<br>(4%) | 3<br>(6%)    | 4<br>(8%)    | 8*<br>(16%) |
| Uterus polyp, stromal                                | 4<br>(8%)   | 12*<br>(24%) | 11*<br>(22%) | 9<br>(18%)  |
| Uterus, stromal sarcoma                              | 0           | 0            | 1<br>(2%)    | 0           |
| Uterus stromal polyp or stromal sarcoma <sup>a</sup> | 4<br>(8%)   | 12*<br>(24%) | 12*<br>(24%) | 9<br>(18%)  |
| Vaginal polyp                                        | 0*          | 0            | 0            | 2<br>(4%)   |

<sup>\*</sup>P≤0.05; \*\*P≤0.01

 $^{a}29/194$  (15.1%  $\pm$  6.3%), range 8%-22%



## **DE-71 2-year Study – Male Rats**

| Organ                  | Nonneoplastic Lesion         |
|------------------------|------------------------------|
| Liver                  | Eosinophilic focus           |
|                        | Hepatocyte hypertrophy       |
|                        | Fatty change                 |
| Thyroid gland          | Follicle hypertrophy         |
| Kidney                 | Hydronephrosis               |
| Parotid salivary gland | Atrophy                      |
|                        | Cytoplasmic vacuolization    |
| Prostate gland         | Inflammation, chronic active |
| Preputial gland        | Duct, ectasia                |
| Thymus                 | Atrophy                      |
| Forestomach            | Epithelium, hyperplasia      |



## **DE-71 2-year Study - Female Rats**

| Organ          | Nonneoplastic Lesion        |
|----------------|-----------------------------|
| Liver          | Hyperplasia, nodular        |
|                | Eosinophilic focus          |
|                | Hepatocyte hypertrophy      |
|                | Fatty change                |
|                | Oval cell, hyperplasia      |
| Thyroid gland  | Follicle hypertrophy        |
|                | Follicular cell hyperplasia |
| Uterus         | Squamous metaplasia         |
| Cervix         | Squamous hyperplasia        |
| Kidney         | Hydronephrosis              |
| Adrenal cortex | Focal hyperplasia           |



## **B6C3F1/N Mice - Final Survival & Mean Body Weight**

| Dose (mg/kg)                       | 0         | 3            | 30          | 100                  |
|------------------------------------|-----------|--------------|-------------|----------------------|
| Male Mice                          |           |              |             |                      |
| Survival                           | 29        | 33           | 31          | 18 month termination |
| Mean BW (g)<br>% control (day 718) | 45.7<br>- | 46.4<br>102% | 38.2<br>84% |                      |
| Female Mice                        |           |              |             |                      |
| Survival                           | 33        | 35           | 37          | 18 month termination |
| Mean BW (g)<br>% control (day 719) | 51.7<br>- | 53.4<br>103% | 48.5<br>94% |                      |



## **B6C3F1/N Male Mouse Body Weights**





## **B6C3F1/N Female Mouse Body Weights**





#### **B6C3F1/N Male Mouse - Liver**

| Dose (mg/kg)                                                | 0             | 3           | 30            | 100           |
|-------------------------------------------------------------|---------------|-------------|---------------|---------------|
| N                                                           | 50            | 50          | 50            | 50            |
| Hepatocellular adenoma <sup>a</sup>                         | 23**          | 35*         | 49**          | 40**          |
|                                                             | (46%)         | (70%)       | (98%)         | (80%)         |
| Hepatocellular carcinoma <sup>b</sup>                       | 18**          | 15          | 30*           | 45**          |
|                                                             | (36%)         | (30%)       | (60%)         | (90%)         |
| Hepatoblastomac                                             | 1**           | 1           | 16**          | 5*            |
|                                                             | (2%)          | (2%)        | (32%)         | (10%)         |
| Hepatocellular<br>adenoma, carcinoma, or<br>hepatoblastomad | 31**<br>(62%) | 40<br>(80%) | 49**<br>(98%) | 47**<br>(94%) |

<sup>\*</sup>P<0.05; \*\*P<0.01

#### Historical controls, gavage corn oil

a168/300 (56.0%  $\pm$  6.7%),range 46%-64% b105/300 (35.0%  $\pm$  9.8%), range 22%-44% c10/300 (3.3%  $\pm$  2.4%), range 0%-6% d221/300 (73.7%  $\pm$  6.1%), range 62%-78%

#### Historical controls, all routes

 $^{a}437/700$  (62.4%  $\pm$  10.5%), range 46%-78%  $^{b}262/700$  (37.4%  $\pm$  11.2%), range 22%-52%  $^{c}34/700$  (4.9%  $\pm$  3.7%), range 0%-12%  $^{d}545/700$  (77.3%  $\pm$  8.3%), range 62%-90%



#### **B6C3F1/N Female Mouse - Liver**

| Dose (mg/kg)                                     | 0     | 3     | 30    | 100   |
|--------------------------------------------------|-------|-------|-------|-------|
| N                                                | 50    | 49    | 50    | 49    |
| Hepatocellular adenoma <sup>a</sup>              | 5**   | 7     | 32**  | 46**  |
|                                                  | (10%) | (14%) | (64%) | (94%) |
| Hepatocellular carcinomab                        | 4**   | 2     | 6     | 27**  |
|                                                  | (8%)  | (4%)  | (12%) | (55%) |
| Hepatocellular adenoma or carcinoma <sup>c</sup> | 8**   | 8     | 33**  | 47**  |
|                                                  | (16%) | (16%) | (66%) | (96%) |

<sup>\*\*</sup>P<0.01

#### Historical controls, gavage corn oil

 $^{a}67/300$  (22.3%  $\pm$  10.5%), range 10%-34  $^{b}30/300$  (10.0%  $\pm$  5.1%), range 4%-18%  $^{c}85/300$  (28.3%  $\pm$  10.2%), range 16%-40%

#### Historical controls, all routes

<sup>a</sup>272/698 (39.1% ± 21.9%), range 62%-90% <sup>b</sup>112/698 (16.1% ± 8.1%), range 4%-34% <sup>c</sup>320/698 (45.9% ± 21.9%), range 16%-82%



## **DE-71 2-year Study – Male Mouse**

| Organ          | Nonneoplastic Lesion         |
|----------------|------------------------------|
| Liver          | Centrilobular, hypertrophy   |
|                | Clear cell focus             |
|                | Necrosis, focal              |
|                | Kupffer cell pigmentation    |
| Thyroid gland  | Follicle hypertrophy         |
| Forestomach    | Epithelium, hyperplasia      |
|                | Inflammation                 |
| Adrenal cortex | Hypertrophy, diffuse         |
| Testes         | Germinal epithelium, atrophy |



## **DE-71 2-year Study – Female Mouse**

| Organ          | Nonneoplastic Lesion       |
|----------------|----------------------------|
| Liver          | Centrilobular, hypertrophy |
|                | Eosinophilic focus         |
|                | Fatty change               |
|                | Kupffer cell pigmentation  |
| Thyroid gland  | Follicle hypertrophy       |
| Forestomach    | Epithelium, hyperplasia    |
| Adrenal cortex | Hypertrophy, diffuse       |



## **DE-71 2-year Conclusions**

## Male Wistar Han rat [Crl:Wl(Han)]

- Clear evidence of carcinogenic activity hepatocholangioma, hepatocellular adenoma, or hepatocellular carcinoma (combined)
- Thyroid gland follicular cell adenoma or carcinoma and pituitary gland (pars distalis) adenoma were also considered related to exposure

#### Female Wistar Han rat [Crl:Wl(Han)]

- Clear evidence of carcinogenic activity hepatocholangioma, hepatocellular adenoma, and hepatocellular carcinoma
- Cholangiocarcinoma was also considered related to exposure
- Uterine stromal polyp or stromal sarcoma (combined) may have been related to exposure



## **DE-71 2-year Study Conclusions**

#### Male B6C3F1/N mice

 Clear evidence of carcinogenic activity – hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma

#### Female B6C3F1/N mice

 Clear evidence of carcinogenic activity – hepatocellular adenoma and hepatocellular carcinoma



## **DE-71 2-year Study Conclusions**

## **Treatment-related Nonneoplastic Lesions**

- Male rats liver, thyroid gland, kidney, parotid salivary gland, prostate gland, preputial gland, thymus, forestomach
- Female rats liver, thyroid gland, uterus, cervix, kidney, adrenal cortex
- Male mice –liver, thyroid gland, forestomach, adrenal cortex, testes
- Female mice liver, thyroid gland, forestomach, adrenal cortex



## Other study findings

- Incidence of female rat liver tumors was not related to AhR receptor polymorphism
- Liver tumor mutation analysis
  - Rat hepatocellular tumors from DE-71 exposure harbored a unique *Hras* mutation at codon 60 but not at the usual hotspot codon 61
  - Mouse hepatocellular carcinomas from DE-71 exposure had a significant increase in *Ctnnb1* incidence
- BDE tissue level increased with increasing dose